MHBOT and soft chambers for brain injury
HBOT can bring about dramatic improvement in many neurological conditions for which we have had very little to offer other than palliative care.
The recommended protocol for TBI is currently one or more blocks of 40, 1-hour HBOT sessions delivered at 1.3 to 1.5 ATM. Treatment can be conveniently delivered in “mild” hyperbaric chambers, soft vinyl chambers limited to 1.3 ATM that are inflated by a small compressor using room air (eliminating the risk of fire). Oxygen is extracted from ambient air by a portable oxygen concentrator, removing the need for oxygen tanks. Oxygen is fed into the chamber through a tube and delivered to the patient via an ordinary hospital oxygen mask.
These chambers are affordable, simple to assemble, simple to operate, and can be used in the outpatient setting. They are considered class II medical devices similar to a continuous positive airway pressure machine, requiring a doctor’s prescription but usable at home without direct medical supervision.
Physiological effects of HBOT
About 97% of the total oxygen in blood is tightly bound to hemoglobin when breathing room air (21% O2) at sea level (1 atmosphere, or 1 ATM; 3% of the oxygen is dissolved in blood serum. This amounts to about 0.3 mL of oxygen dissolved in 100 mL of serum. By the time oxygen diffuses out of the circulatory system and ultimately reaches the mitochondria, there is just a trace amount present. HBOT’s primary mechanism is to temporarily hyper-oxygenate body tissues. HBOT delivered at 1.3 ATM increases dissolved oxygen in serum by a factor of 7. HBOT delivered in hard chambers at 2.5 to 3.0 ATM increases dissolved oxygen by a factor of 15 or more. Oxygen levels in body tissues outside the circulatory system will be increased commensurately.
If a hyper-oxygenated state is maintained for long periods it will cause significant oxidative damage, but when it is “pulsed” for an hour it triggers a variety of healing processes without overwhelming the body’s anti-oxidant system. The currently known mechanisms include a powerful anti-inflammatory effect, reduction of edema, increased blood perfusion, angiogenesis, stimulation of the immune system, stimulation of endogenous antioxidant systems, mobilization of stem cells from bone marrow, axonal regrowth, and modulation of the expression of thousands of genes involved in the inflammatory response and various healing responses.
Treatment of Traumatic Brain Injury With Hyperbaric Oxygen Therapy (psychiatrictimes.com)