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Abstract: Effective metabolism is highly dependent on a narrow therapeutic range of oxygen.

Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene

expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation

of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels

(hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and

metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the

free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular

level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and

cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic

paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by

hypoxia, and the cascade of events triggered by the HHP.

Keywords: hyperoxia; hypoxia; hyperbaric oxygen; biogenesis; hyperoxic-hypoxic paradox;

hypoxia-inducible factor (HIF)

1. Introduction

Oxygen is the third-most abundant element in the universe, after hydrogen and helium, and it is

the most dominant effector of most living creatures on earth. About 300 million years ago, during

the Carboniferous period, atmospheric oxygen levels reached a maximum of 35%, which may have

contributed to the large size of animals and insects at this time [1,2]. Today, oxygen constitutes 20.8%

of the earth’s atmosphere, and any slight change in its concertation will have a dramatic impact on all

levels of mammalian physiology. The ability to maintain oxygen homeostasis is essential for survival,

and all mammalian physiological systems evolved to ensure the optimal level of oxygen supplied

to all cells in each organism. This has transpired through the evolution of a complex physiological

infrastructure for oxygen delivery (the lungs), oxygen transport carriers (erythrocytes and plasma),

oxygen transport pathways (vascular system), and the pump (heart). Both the development and

regulation of these systems in organisms provide the basis for oxygen homeostasis.

Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly,

low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic

changes, and regenerative processes, including angiogenesis and stimulation of stem-cell proliferation,

migration, and differentiation. The sensing of decreased oxygen (hypoxia) levels or increased

(hyperoxia) oxygen levels occurs through specialized chemoreceptor cells and metabolic changes at

the cellular level which regulate the response. Interestingly, in the cellular milieu, fluctuations in free

oxygen concentrations rather than the absolute level of oxygen can be interpreted as a lack of oxygen.

Thus, intermittent increases in oxygen concentration can induce many of the mediators and cellular
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mechanisms that are usually induced during hypoxia. This is the so- called hyperoxic-hypoxic paradox

(HHP).

In this article, we review oxygen physiology, the main cellular processes triggered by hypoxia,

and the cascade of events triggered by the HHP.

2. Oxygen Homeostasis

All of our body’s tissues rely on a continuous oxygen supply at a rate that matches the changing

metabolic demands. The oxygen delivery chain begins at the lungs, with the destination being the

mitochondria (Figure 1). Oxygen is delivered by convection in the airways and blood vessels. It then

diffuses across the alveolar-capillary membrane and through the capillary wall to the interstitium

and to its destination, the mitochondria. In the blood, oxygen is carried in two forms—a fraction

that is bound to hemoglobin and a free fraction dissolved in the plasma. The amount of dissolved

oxygen is proportional to the oxygen partial pressure at a specific temperature, according to Henry’s

law [3]. At physiologic normoxic conditions, i.e., at normal content of inspired oxygen (20.8%), most

(up to 99%) of the oxygen is carried by hemoglobin, and the dissolved quantity of oxygen is small [4].

Therefore, the amount of red blood cells will dominantly affect the total capacity of oxygen delivery.

However, at an elevated partial pressure of oxygen (such as breathing pure oxygen and during a

hyperbaric exposure), the dissolved amount can become significant. In all cases, the diffusion gradients

are oxygen’s driving force from the plasma to the mitochondria. Thus, the free dissolved fraction has a

dominant effect on the mitochondria. It is assumed that oxygen freely diffuses across cell membranes.

However, recent data indicate that water channels, such as aquaporin-1 (AQP-1), also work as oxygen

transporters [5].

All of our body’s tissues rely on a continuous oxygen supply at a rate that matches the changing 

—

’

gradients are oxygen’s driving force from the plasma to the mitochondria. Thu

Figure 1. Oxygen delivery chain.

At the normal steady state, oxygen homeostasis is a dynamically regulated process.

The physiological cellular demand for oxygen can vary depending on tissue requirements at a
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given moment. For example, an exercising muscle has significantly higher oxygen demand than a

relaxed muscle. Consequently, the oxygen delivery rate to tissues is continuously adjusted.

Several mechanisms enable the human body to maintain an adequate oxygen supply [6].

The systemic sensing and response to hypoxia include (a) carotid body glomus, a chemosensor

in the arterial circulation that can increase the ventilation rate, (b) and the neuroepithelial bodies

(NEBs), which are clusters of cells exposed to the airway lumen at branching points, innervated by

the Vagus nerve which dilate the pulmonary arteries to optimize the ventilation–perfusion exchange.

The adrenergic system is activated during hypoxia, increasing cardiac output and selective blood

perfusion to the more crucial organs. At the organ level, arteries dilate in response to hypoxia to increase

oxygen delivery. Oxygenation levels are also sensed by the kidneys, which regulate erythropoietin

production to adjust the number of red blood cells (RBC) and oxygen-carrying capacity. In addition

to the dynamic respiratory and metabolic systems allowing increased oxygen delivery, as outlined

above, it is necessary to have regulating mechanisms at the cellular level. These are essential for

survival at extreme environmental conditions and pathological/disease states where systemic regulation

is insufficient.

At the cellular level, 80% of the available oxygen is used by the mitochondria, while only 20% is

used by other organelles. Being the major oxygen consumer and metabolizer, the partial pressure in

the mitochondria is very low, only 1–3 mmHg (Figure 1). Mitochondria are, therefore, the key oxygen

sensor, as well as important signaling organelles [7]. Most evidence so far points to the following

theory: mitochondria signal the onset of hypoxia by generating reactive oxygen species (ROS) signals

by the electron transport chain. When ROS are released to the intermembrane space, they interplay

with the activation of enzymes, transcription factors, and post-translation responses [8].

In addition, several cells can adapt to reduced oxygen levels by unique mechanisms [6].

For example, the hemoglobin in red blood cells can change its form and affinity under hypoxic

conditions [4]. Cytochrome P-450 monooxygenases (CYP) include a vast number of homologous

oxygen-sensitive proteins that oxidize a wide range of compounds. Numerous reports have suggested

that CYP metabolites contribute to the hypoxia response in the systemic microvasculature and

endothelium, and may contribute to hypoxic pulmonary vasoconstriction [6,9,10].

3. Hypoxia-Induced Cellular Cascade

As detailed above, effective metabolism is highly dependent on a narrow therapeutic window of

oxygen. However, while the arterial oxygen partial pressure in adult mammals is ≈100 mmHg, in the

mammalian fetus, it is around 40 mmHg. Thus, hypoxia is a relative term and is most usefully defined

as a condition in which failure of either delivery or utilization of oxygen limits normal function.

3.1. Hypoxic Inducible Factor

A low level of oxygen is signaled by all living cells, which starts with a class of enzymes called

prolyl hydroxylase domain (PHD) proteins [11,12] (Figure 2). Under normal oxygen concentrations,

these PHD enzymes include oxygen-sensing hydroxylases which hydroxylate specific proline and

asparagine residues on the α-subunit of the transcription factor hypoxia-inducible factor (HIF).

Following hydroxylation, the HIF-1α subunit is targeted by the E3 ubiquitin ligase, also known as the

von Hippel–Lindau protein (VHLp), which induces HIF-1α ubiquitination and degradation. Factor

inhibiting HIF (FIH) is an additional hydroxylase, which hydroxylates an asparagine residue on the

α-subunit of HIF, deactivating the HIF transcription factor. HIF is a heterodimer composed of HIF-1α,

HIF-2α, or HIF-3α subunits, which dimerize with HIF-1β, HIF-2β, and HIF-3β subunits respectfully

forming HIF-1, HIF-2, and HIF-3 factors. HIF-1α is produced in all cell types while the HIF-2α

subunit is found in specific cells, including myeloid cells, liver parenchyma, vascular endothelia, type

II pneumocytes, and renal interstitium. While HIF-1 and HIF-2 function as lead regulators of the

transcriptional response to hypoxia, the HIF-3 function is yet to be known. Although the HIF1A gene
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is constitutively expressed at low levels under normoxic conditions, it is significantly upregulated in

response to hypoxia [13].

HIF-1, when stabilized by hypoxic conditions (without hydroxylases repression) (Figure 2), serves

as a transcription factor that regulates over 100 genes essential for survival in oxygen-deprived

conditions [14]. These include glycolysis enzymes, which allow adenosine triphosphate (ATP)

synthesis in an oxygen-independent manner, enzymes decreasing the basal respiratory rate, and

upregulating the vascular endothelial growth factor (VEGF) to induce angiogenesis which improves

tissue perfusion. Unlike HIF-1, HIF-2 regulates iNOS (inducible NO synthase) and other factors that

support increases in tissue oxygenation in adults, such as erythropoietin production [15]. In addition

to modulating cellular metabolism needs for survival in a hypoxic environment, HIF-1 can either

turn on or off key mammalian regeneration processes [16–18]. In controlled mammalian models, it

was demonstrated that continuous downregulation of HIF-1 results in a scarring response and loss of

tissue [16]. HIF-1 also has an important role in the regeneration and maintenance of essential organ

functions that are highly oxygen-dependent such as the brain and the heart. Research conducted on

mice demonstrated that increased HIF expression is neuroprotective and enhances regenerative effects

that can enhance hippocampal memory and induce better neuroregeneration in post-stroke and spinal

cord injuries [17,19,20]. With regard to the heart, increased HIF expression initiates the metabolic

processes needed to regenerate the damaged myocardium and improve cardiac functions after various

types of injuries [18,21].

1α and the nuclear HIF 1β subunits. (
1α hydroxylation, HIF 1α 

– 1α 

Figure 2. The intracellular cascade of HIF-1 alpha. Legend: HIF-1 is a heterodimer composed of

cytoplasmatic HIF-1α and the nuclear HIF-1β subunits. (a) Under normal oxygen environments,

the ratio of ROS/scavenger is high and the free ROS molecules initiate HIF-1α hydroxylation, HIF-1α
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subunits become a target for VHLp (von Hippel–Lindau protein) protein which facilitates HIF-1α

subunits ubiquitination and degradation. (b) Under hypoxic conditions, less oxygen and ROS molecules

are available, HIF-1α subunits are not hydrolyzed, and more HIF-1α subunits penetrate the nucleus to

conjugate with HIF-1β subunits and generate the active HIF transcription factor. (c) At the hyperoxic

environment, more ROS and oxygen are available; thus more HIF-1α subunits are hydrolyzed and

degraded. (d) The adaptive response to repeated hyperoxia includes increases in the production of

scavengers that adjust to the increased ROS generation. Thus, the ROS/scavenger ratio gradually

becomes similar to the ratio under normal oxygen environment prior to initiating repeated hyperoxic

exposures. (e) Upon return to normoxia, following repeated hyperoxic exposures, the ratio of

ROS/scavenger is low due to the fact scavengers elimination half-life (T1/2) is significantly longer than

the T1/2 of ROS. Accordingly, less HIF-1α subunits are hydroxylated, and more of them penetrate the

nucleus, conjugate with HIF-1β to generate the active HIF, similar to the hypoxic state.

3.2. Vascular Endothelial Growth Factor (VEGF)

The VEGF family comprises five members: VEGF-A, placenta growth factor (PGF), VEGF-B,

VEGF-C, and VEGF-D. VEGF-A is the most known factor out of the VEGF family. All VEGF factors

induce different cellular responses by binding to their respective tyrosine kinase receptors located on

the cell surface, inducing the receptors’ dimerization, phosphorylation, and activation [22]. VEGF-A

production is induced by HIF-1, which in turn activates vascular cells to initiate angiogenesis (the

budding of new capillaries from existing vessels) and arteriogenesis (the remodeling of collateral blood

vessels to handle the increased flow, bypassing stenotic regions of the original conduit arteries) [11,23].

In addition, the VEGF-A factor induces vasodilatation activity, as well as microvascular permeability

increase needed for immediate improvement of tissue ischemia [11]. VEGF-A also stimulates the

mobilization of bone marrow-derived angiogenic cells (BMDACs), which in turn migrate to ischemic

tissues and participate in angiogenesis and arteriogenesis [11].

3.3. Sirtuin

Sirtuins are a family of signaling proteins involved in metabolic regulation. Sirtuins activities

include mono-adenosine diphosphate (ADP)-ribosyltransferase or deacylase [24,25]. In mammals,

seven sirtuins (SIRT 1–7) have been discovered in different subcellular compartments: SIRT1, SIRT6,

and SIRT7 located in the nucleus, SIRT2 in the cytoplasm, and SIRT3, SIRT4, and SIRT5 in the

mitochondria [24,25]. SIRT1 is involved in various mechanisms regulating apoptosis, inflammation,

and senescence, which are associated with aging-related diseases [14,26–29]. Reductions in the nuclear

energy state and nicotinamide adenine dinucleotide (NAD+) levels decrease the SIRT1 activity, which

results in diminished pVHL levels and the stabilization of HIF-1α. Conversely, overexpression of

SIRT1 promotes mitochondrial biogenesis by deacetylation, resulting in the activation of HIF-1α [30].

The decreased level of SIRT1, in both transcriptional and posttranscriptional stages during aging is

considered to be a major metabolic pathway that attenuates mitochondrial biogenesis and causes

aging-related diseases [14]. In mice models, overexpression of SIRT1 results in delayed aging

phenotypes and lifespan extension, whereas inhibition of SIRT1 annuls the lifespan extension [31].

Overexpression of SIRT1 or SIRT6 is protective in many murine disease models, including cancer, type

2 diabetes, and cardiovascular disease [26,28,32–35].

The crosstalk between oxygen- and redox-responsive signal transducers occurs through the

SIRT1-HIF interaction [36,37]. During hypoxia, the reduced NADH consumption in mitochondria

and increased NADH production from glycolysis, causes a reduction of the NAD+/NADH ratio,

downregulating SIRT1 transcription. Reduced SIRT1 allows the acetylation of HIF-1α and its activation

and provides a positive feedback loop that maintains high levels of HIF-1 activity during hypoxia.

Due to the metabolic crisis in hypoxia, HIF-1 blocks mitochondrial energy metabolism by (1) inducing

PDK-1, which inhibits the conversion of pyruvate to acetyl-CoA, by (2) inhibiting mitochondrial

biogenesis via c-Myc repression, and by (3) reducing mitochondrial transcription factor A (TFAM),

required for replication, transcription, and maintenance of mitochondrial biogenesis [38,39].
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3.4. Mitochondria Biogenesis

Maintaining an adequate mitochondrial population during one’s lifetime is crucial. Mitochondrial

quality control occurs via the process of mitophagy, degradation of damaged mitochondria, and

generation of newly functioning mitochondria by mitochondrial biogenesis, a process in which new

mitochondria are formed by growth and division of preexisting mitochondria. Mitochondrial biogenesis

is crucial for preserving most human cell integrity, and in recent years, there is growing evidence about

their important role in preserving brain functionality and in neurodegenerative diseases [40].

Mitochondrial biogenesis is a complex process requiring coordinated bi-genomic (cellular and

mitochondrial DNAs) regulation to execute several distinct processes, including (1) inner and outer

mitochondrial membrane synthesis, (2) synthesis of mitochondrial-encoded proteins, (3) synthesis and

import of nuclear-encoded mitochondrial proteins, and 4) replication of mitochondrial DNA (mtDNA).

Several cell-signaling pathways tightly regulate mitochondrial biogenesis. The AMP-activated kinase

(AMPK)-PGC-1a axis and Sirtuin 1 (SIRT1)-PGC-1a are two major pathways that regulate mitochondrial

biogenesis. AMPK can be activated by physiological stimuli such as exercise, starvation, and transient

hypoxia [41–44].

There is considerable overlap between the AMPK and HIF signaling pathways, as both are

involved in energetic stresses, though the relationship is complex, with both opposing and cooperative

outcomes depending on the context [45]. As mentioned, AMPK is a potent stimulator of mitochondrial

biogenesis, which in normoxic conditions acts to restore ATP homeostasis. However, as detailed above,

once AMPK activation occurs under hypoxic conditions, i.e., energetic stress, additional mitochondrial

biogenesis, and oxygen consumption would further decrease oxygen availability and worsen the stress.

Therefore, HIF signaling under prolonged hypoxia generally acts to decrease mitochondrial biogenesis

and mass [45].

3.5. Stem Cells

Stem cells (SC) are undifferentiated or partially differentiated cells that can differentiate into

various types of cells and divide indefinitely to produce more of the same stem cell. In mammals,

the major groups of stem cells include hematopoietic stem cells (HSC), which replenish blood and

immune cells, basal cells, which maintain the skin epithelium, and mesenchymal stem cells (MSC),

which maintain bone, cartilage, muscle and fat cells. There are also more targeted subgroups of SCs

that include neuronal stem cells (NSC) that persist in restricted regions in the adult brain and continue

to produce neurons throughout the person’s life. NSCs can generate nerve cells and their supporting

cells, oligodendrocytes, and astrocytes [46]. In addition to their differentiation capacity, SCs have

multipotent properties that include anti-inflammatory effects that make them potential therapeutic

candidates for a variety of disorders [47].

During normal conditions, SCs are at a reversible state of quiescence, i.e., at a temporary cell

cycle arrest [48]. While being quiescent, they exhibit improved stress resistance and enhanced

survival ability. Oxygen has an important role in the regulation of stem cell proliferation and

differentiation [48–50]. Short term hypoxia can induce SC proliferation, migration, and differentiation

capacity [48,50]. In addition, hypoxia also modulates the paracrine activity of MSCs, causing

upregulation of various secreted factors, such as VEGF and exosomes, that also have important

angiogenesis and anti-inflammatory effects [50–52]. The mechanisms by which hypoxia exerts its effect

on cells is mainly regulated by HIF-1 and related down-cascade protein expression [48,50].

4. The Hyperoxic Hypoxic Paradox

As detailed above, hypoxia is the natural trigger for mitochondria metabolic changes via elevated

levels of HIF, VEGF, Sirtuin, mitochondria metabolic changes, and SC proliferation, and migration.

However, the understanding that at the cellular level, oxygen level fluctuations can trigger a cellular

cascade that is usually triggered by hypoxia, allows the use of intermittent hyperoxia to stimulate
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tissue regeneration without the hazardous effects of hypoxia. This is termed the “hyperoxic-hypoxic

paradox” (Figure 3).

In clinical practice, intermittent hyperoxia can be generated using hyperbaric oxygen therapy

(HBOT). HBOT includes inhaling 100% oxygen at pressures exceeding 1 atmosphere absolute (ATA)

to enhance the amount of oxygen dissolved in the body tissues. During HBOT, the arterial O2

tension typically exceeds 1500 mmHg, and levels of 200–400 mmHg occur in tissues. In a normal

individual, at a normal environment (20.8% oxygen at 1ATA), the hemoglobin is almost entirely

saturated (94–99%). Accordingly, when in a hyperbaric environment, the effect is only in the dissolved

oxygen. As mentioned above, the dissolved oxygen is the fraction responsible for the diffusion gradient

from the capillaries to the mitochondria. In the following part of the article, we will review the cellular

cascade induced following repeated transient hyperoxia.

“hyperoxic hypoxic paradox” (Figure 3).

typically exceeds 1500 mmHg, and levels of 200–400 mmHg occur in tissues. In a normal individ
–

–
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1α 
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Figure 3. The major cellular response cascade initiated by hypoxia and by intermittent hyperoxia.

Legends: HIF: Hypoxic induce factor; VEGF: Vascular endothelial growth factor; SIRT: Sirtuin.

4.1. Hypoxia-Inducible Factor

It has been proposed that the relative changes in oxygen availability rather than constant hypoxia

or hyperoxia have a more dominant effect on HIF expression [53–55]. According to this hypothesis,

the cells interpret the change from normoxia to hypoxia or the change back to normoxia following

a hyperoxic exposure as an oxygen shortage and induce HIF-1-regulated gene synthesis [53–55].

Even though there is a growing understanding of the cellular cascade responsible for HIF expression

(as detailed below), the precise level of inspired oxygen and the exact timeframe for its iterative

administrations are not fully known yet.

The proposed mechanisms for increased HIF availability at normoxia after hyperoxic exposure

relates to ROS availability and scavengers, such as the glutathione synthase and superoxide dismutase

(SOD) enzymes [53–55]. As detailed above (Figure 2), at normoxic conditions when oxygen and

its ROS derivates are available at higher ratios compared to their scavengers, most of the HIF-1α

subunits are hydroxylated by PHD. This results in their ubiquitination by VHLp, and consequently,
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degradation of HIF-1α in the proteasome. In hypoxia, oxygen and its ROS derivates are less available,

the HIF-1α is not hydroxylated and ubiquitinated by VHLp, and more HIF-1α is available to enter

the nucleus and is dimerized with HIF-1β to form the active HIF promotor. During hyperoxia,

increased levels of oxygen availability will enhance the production ROS and the production of ROS

scavengers, including glutathione peroxidase, SOD, as well as other ROS scavengers [56–60]. Based

on the above cumulative data, our perspective is that this scavenger level increase is limited and

gradual following a single hyperoxic exposure, and repeated exposures are required in order to

obtain significant scavenging activity (Figure 2). After returning to normoxia from a single hyperoxic

exposure, the ROS/scavenging capacity ratio will be high, leading to ubiquitination of all HIF molecules.

Upon return to normoxia following repeated hyperoxic exposures, the level of scavengers is increased,

along with their inherent elimination half-life (T1/2), which is significantly longer than ROS T1/2.

Thus, the ratio of ROS/(scavenging capacity) will be low, similar to the hypoxic state. With enhanced

scavenging capacity, less ROS is available to bind PHD, less degradation of HIF-α subunits, which, in

turn, will enter the nucleus to bind to HIF-1β and generate the active HIF gene promotor. Meaning,

intermittent hyperoxia generates a hypoxia-mimicking state without hypoxia by decreasing the ratio

of ROS/scavenging capacity.

The effect of repeated intermittent hyperoxia by HBOT on HIF expression was demonstrated in

different types of organs and cells [57,58,61,62]. For example, HBOT can induce HIF expression and its

related regenerative cascade in the injured brain [58,63], gastrointestinal tract [57], and liver [61,62].

In addition, HBOT induces the expression of different types of HIF and in different types of stem

cells [59,64]. The dose-response curve related to the applied pressure, time, and number of HBOT

exposures and its relation to HIF expression is still not fully understood, and further studies are

needed to find the optimal HBOT protocols. It should be noted that when HBOT is administrated to an

ischemic tissue, which overexpresses HIF, tissue hypoxia is being reversed and corrected, accordingly

the overexpressed HIF is reduced towards the normalized baseline [65–70]. Moreover, when HBOT

is being used as preconditioning therapy for hypoxia (by HIF induction), the tissue will tolerate the

ischemic insult better, less ischemic injury induced, and the overall post insult HIF expression will be

lower than expected for the same insult [71,72].

4.2. VEGF and Angiogenesis

VEGF production is induced by HIF-1 and then goes on to stimulate the cellular processes needed

for both angiogenesis and arteriogenesis (as detailed above). VEGF is significantly increased following

intermittent hyperoxic exposures, utilizing the HHP. There is growing evidence from preclinical as

well as from clinical studies demonstrating that repeated HBOT sessions induce the crucial elements

for angiogenesis, VEGF expression, and endothelial progenitor cells (EPCs) [61,73–75]. Unlike VEGF

induced under ischemic conditions, VEGF induction under hyperoxic stimuli can facilitate angiogenesis

in tissues that are hypoxic/ischemic while breathing normal air. Clinical studies have confirmed that

repeated daily HBOT sessions augment the circulating levels of VEGF, EPCs, and improve the blood

flow in ischemic areas of patients with chronic peripheral arterial occlusive diseases, with or without

non-healing wounds [73–76].

The use of hyperoxic stimuli to induce angiogenesis is crucial for organs that are oxygen- deprived,

even at normal conditions such as the human brain [77,78]. Therefore, to enable brain angiogenesis and

regenerative processes, it is essential to increase oxygen delivery in addition to VEGF induction, which

is achieved by cyclic hyperoxic exposure. HBOT can initiate the cellular and vascular repair mechanisms

to induce brain angiogenesis and improve cerebral blood flow in damaged brain regions [79–81].

4.3. Sirtuin

SIRT1 acts as a metabolic sensor by its ability to deacetylate the mitochondrial biogenesis

factor PGC-1α. During hyperoxia, the NAD+/NADH ratio is increased through the Krebs cycle and

mitochondrial metabolism, triggering SIRT1 [82,83]. SIRT1 is known to deacetylate FOXO3a, which
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induces antioxidant responses via modulating SOD2 and CAT. FOXO3a has further been shown to

regulate mitochondrial gene expression, resulting in modulated ROS levels [82]. SIRT1 regulates the

acetylation of PGC-1α, a master regulator of mitochondrial biogenesis [83]. SIRT1, along with other

sirtulins appears to be an integral part of an important cellular defense mechanism against oxidative

stress and ROS formation.

Intermittent hyperoxic exposures, can produce ROS molecules that increase the activity of SIRT-1

inside cells through the activation of mitogen-activated protein kinase (MAPK) [84]. The effect of

intermittent hyperoxic exposure was evaluated in several animal models. Yan et al. evaluated the

effect of HBOT on SIRT1 in a model of focal cerebral ischemia induced by middle cerebral artery

occlusion and also on primary cultured cortical neurons subjected to oxygen-glucose deprivation

injury [84,85]. Their findings indicate that HBOT’s neuroprotective effect is mediated by increased

SIRT1 mRNA and protein expression. HBOT’s neuroprotection was attenuated by a SIRT1 inhibitor

and also in SIRT1 knockdown rats [84]. In another study done in hyperglycemic rats after middle

cerebral artery occlusion, HBOT induced activation of ATP/NAD and SIRT1 and SIRT2 pathways

resulting in attenuation of hemorrhagic transformation, brain infarction, as well as neurological function

improvement [86]. Similar results, indicating that the neuroprotective effects of HBOT are mediated by

SIRT1 were demonstrated in middle-aged mice with postoperative cognitive dysfunction [87].

4.4. Mitochondria

Any change in the free dissolved oxygen generates a diffusion gradient that directly affects the

oxygen delivered and sensed by the mitochondria through the production of ROS signaling molecules.

Therefore, intermittent increases in dissolved oxygen generated by HBOT can be compared to “intense

interval training” with an expected cumulative effect along with repeated exposures. In a well-designed

mice model study, it was demonstrated that adding intermittent hyperbaric exposure to exercise

training further improves endurance performance by facilitating oxidative and glycolytic capacities and

by increasing the expression of proteins involved in mitochondrial biogenesis in striated muscles [88].

In humans, combining HBOT to an exercise training regimen induces better cardiorespiratory fitness

compared to exercise training alone [89].

Regarding the brain, ROS are considered to have significant metabolic effects, and the main

source of ROS in the brain is the mitochondria [90]. Normally 1–2% of the oxygen consumed by the

mitochondria is converted to O2
−1 and related ROS metabolites such as hydrogen peroxide (H2O2)

and peroxynitrite (ONOO-) [91]. O2
−1 and related ROS formations increase in proportion to the partial

pressure of oxygen, and in high pressure multiplied by the exposure duration. Exposure may induce

high neurological activity presented in the form of epileptic seizures [90]. In a study done by Gutsaeva

et al., it was demonstrated that pre-convulsive dosages of HBOT induce significant mitochondrial

biogenesis in the hippocampus [91]. The cellular response in the hippocampus was mediated by

increased NRF-2 gene expression, TFAM gene expression, and mitochondrial gene transcription [91].

In recent years, there is growing evidence about the possibility and the importance of mitochondrial

transfer between astrocytes and neurons for proper maintenance of neuronal function and as cell-cell

signaling [92,93]. Neurons can release and transfer damaged mitochondria to astrocytes for disposal

and recycling [92], and astrocytes can release functional mitochondria that enter into neurons [93].

In a study done by Borlongan and Lippert, it was demonstrated that HBOT could facilitate the transfer

of resilient mitochondria from astrocytes to neuronal cells that are more susceptible to inflammation [94].

The mitochondrial transfer from astrocytes to neurons makes the neurons more resilient to inflammatory

insults. These findings suggest a new mitochondrial mechanism of neuroglial crosstalk that may

contribute to endogenous neuro-protective and neuro-recovery mechanisms induced by HBOT.

4.5. Stem Cells

Both hypoxia and intermittent hyperoxia increase HIF and its downstream gene expression,

including stem cell factors (SCFs) [95]. Growing data from preclinical and clinical studies demonstrate
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the cumulative effect of repeated intermittent hyperoxia by HBOT on proliferation and mobilization of

stem cells [59,96–112]. Clinical studies on patients suffering from diabetic wounds and post-traumatic

brain injury have demonstrated that repeated HBOT sessions increase circulating (mobilization) stem

cells in correlation with the clinical improvements [96–98].

With regard to subtypes of stem cells, it was demonstrated that HBOT promotes neuronal

stem cell proliferation [99–105], stimulates vasculogenic stem cell growth and differentiation [59,106],

stimulates colonic stem cells and induces mucosal healing [107], improves the osteogenic properties

of mesenchymal stem cells [108,109], and increases the myoblast growth rate and enhances muscle

regeneration [110–112].

The main advantage of stimulating stem cells by intermittent hyperoxia instead of hypoxia, is that

stem cell proliferation and differentiation, similar to any other regenerative process, is energy-dependent

and cannot be accomplished in a hypoxic environment. The fact that oxygen is crucial for stem cells

related to regenerative effects has been validated in different studies that compared the results of stem

cell injections along with or without HBOT. The potential added value of using HBOT in addition to

stem cell injections was seen in a variety of tissues, including brain [113,114], spinal cord and peripheral

nerves [115,116], myocardium [117,118], and diabetic wounds [119]. In all those studies, adding HBOT

to stem cell injections had synergistic beneficial effects.

4.6. Oxygen Toxicity

Although oxygen therapy is considered to be safe, like other active ingredients or drugs, at high

dosage, it can be harmful and result in oxygen toxicity. Prolonged exposure to high oxygen pressure

with a prolonged imbalance between ROS to scavengers can lead to membrane lipid peroxidation

and enzyme inhibition and modulations, most commonly seen in the central nervous system (CNS),

that lead to alterations in neuronal metabolism and its related electrical activity [120]. As was first

suggested in 1878, breathing hyperbaric oxygen can culminate in grand mal seizures [121]. Another

organ that is relatively sensitive to oxygen toxicity is the lung. Pulmonary oxygen toxicity can be

manifested by chest tightness, cough, and a reversible decline of pulmonary function [122].

Both CNS and pulmonary toxicity depend upon the partial pressure of oxygen and the duration

of exposure [123]. Accordingly, the new HBOT protocol used today includes repeated daily sessions

limited to 60–90 min with oxygen partial pressure not exceeding 2.4 ATA, as well as air brakes every

20–30 min. Using those new protocols, HBOT is considered to be safe, while both pulmonary and

oxygen toxicity are very rare [124–126]. In a recent analysis of 62,614 hyperbaric sessions, the overall

incidence of seizures during hyperbaric sessions was 0.011% (1:8, 945 sessions) [124,125]. In addition,

in patients without chronic lung diseases, the currently used HBOT protocols do not cause any

pulmonary toxicity or changes in pulmonary functions following 60 repeated exposures [126].

5. Summary

As in Albert Einstein’s “theory of relativity” that explains the basic physical aspects of our cosmos,

relatively can also be found in the micro-cosmos, i.e., the microenvironmental interpretation at the

cellular level. As summarized in Figure 3, most of the cellular cascades initiated by hypoxia can be

induced by intermittent hyperoxia, the so-called “hyperoxic-hypoxic paradox”. HIF, VEGF, SIRT,

mitochondrial biogenesis, and stem cell proliferation and migration could all be induced by “biological

fooling” the cells with certain protocols of repeated intermittent hyperoxia. Even though the exact

dose response-curve has yet to be discovered in clinical practice, certain HBOT protocols have already

demonstrated induction of damaged tissue regeneration.
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